Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Frontiers in Physics ; 10:5, 2022.
Article in English | Web of Science | ID: covidwho-1686526

ABSTRACT

We present an R package developed to quantify coronavirus disease 2019 (COVID-19) importation risk. Quantifying and visualizing the importation risk of COVID-19 from inbound travelers is urgent and imperative to trigger public health responses, especially in the early stages of the COVID-19 pandemic and emergence of new SARS-CoV-2 variants. We provide a general modeling framework to estimate COVID-19 importation risk using estimated pre-symptomatic prevalence of infection and air traffic data from the multi-origin places. We use Hong Kong as a case study to illustrate how our modeling framework can estimate the COVID-19 importation risk into Hong Kong from cities in Mainland China in real time. This R package can be used as a complementary component of the pandemic surveillance system to monitor spread in the next pandemic.

2.
Infect Dis Model ; 6: 875-897, 2021.
Article in English | MEDLINE | ID: covidwho-1324145

ABSTRACT

We consider models for the importation of a new variant COVID-19 strain in a location already seeing propagation of a resident variant. By distinguishing contaminations generated by imported cases from those originating in the community, we are able to evaluate the contribution of importations to the dynamics of the disease in a community. We find that after an initial seeding, the role of importations becomes marginal compared to that of community-based propagation. We also evaluate the role of two travel control measures, quarantine and travel interruptions. We conclude that quarantine is an efficacious way of lowering importation rates, while travel interruptions have the potential to delay the consequences of importations but need to be applied within a very tight time window following the initial emergence of the variant.

3.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Article in English | MEDLINE | ID: covidwho-1319070

ABSTRACT

Since its outbreak in December 2019, the novel coronavirus 2019 (COVID-19) has spread to 191 countries and caused millions of deaths. Many countries have experienced multiple epidemic waves and faced containment pressures from both domestic and international transmission. In this study, we conduct a multiscale geographic analysis of the spread of COVID-19 in a policy-influenced dynamic network to quantify COVID-19 importation risk under different policy scenarios using evidence from China. Our spatial dynamic panel data (SDPD) model explicitly distinguishes the effects of travel flows from the effects of transmissibility within cities, across cities, and across national borders. We find that within-city transmission was the dominant transmission mechanism in China at the beginning of the outbreak and that all domestic transmission mechanisms were muted or significantly weakened before importation posed a threat. We identify effective containment policies by matching the change points of domestic and importation transmissibility parameters to the timing of various interventions. Our simulations suggest that importation risk is limited when domestic transmission is under control, but that cumulative cases would have been almost 13 times higher if domestic transmissibility had resurged to its precontainment level after importation and 32 times higher if domestic transmissibility had remained at its precontainment level since the outbreak. Our findings provide practical insights into infectious disease containment and call for collaborative and coordinated global suppression efforts.


Subject(s)
COVID-19/transmission , Communicable Diseases, Imported/transmission , COVID-19/epidemiology , COVID-19/prevention & control , China/epidemiology , Cities , Communicable Disease Control/legislation & jurisprudence , Communicable Diseases, Imported/epidemiology , Communicable Diseases, Imported/prevention & control , Humans , Models, Statistical , Risk , SARS-CoV-2 , Spatio-Temporal Analysis , Travel
4.
J Biomed Inform ; 118: 103800, 2021 06.
Article in English | MEDLINE | ID: covidwho-1219083

ABSTRACT

OBJECTIVE: As the potential spread of COVID-19 sparked by imported cases from overseas will pose continuous challenges, it is essential to estimate the effects of control measures on reducing the importation risk of COVID-19. Our objective is to provide a framework of methodology for quantifying the combined effects of entry restrictions and travel quarantine on managing the importation risk of COVID-19 and other pandemics by leveraging different sets of parameters. METHODS: Three major categories of control measures on controlling importation risk were parameterized and modelled by the framework: 1) entry restrictions, 2) travel quarantine, and 3) domestic containment measures. Integrating the parameterized intensity of control measures, a modified SEIR model was developed to simulate the case importation and local epidemic under different scenarios of global epidemic dynamics. A web-based tool was also provided to enable interactive visualization of epidemic simulation. RESULTS: The simulated number of case importation and local spread modelled by the proposed framework of methods fitted well to the historical epidemic curve of China and Singapore. Based on the simulation results, the total numbers of infected cases when reducing 30% of visitor arrivals would be 88·4 (IQR 87·5-89·6) and 58·8 (IQR 58·3-59·5) times more than those when reducing 99% of visitor arrivals in mainland China and Singapore respectively, assuming actual time-varying Rt and travel quarantine policy. If the number of global daily new infections reached 100,000, 85%-91% of inbound travels should be reduced to keep the daily new infected number below 100 for a country with a similar travel volume as Singapore (daily 52,000 tourist arrivals in 2019). Whereas if the number was lower than 10,000, the daily new infected case would be less than 100 even with no entry restrictions. DISCUSSIONS: We proposed a framework that first estimated the intensity of travel restrictions and local containment measures for countries since the first overseas imported case. Our approach then quantified the combined effects of entry restrictions and travel quarantine using a modified SEIR model to simulate the potential epidemic spread under hypothetical intensities of these control measures. We also developed a web-based system that enables interactive simulation, which could serve as a valuable tool for health system administrators to assess policy effects on managing the importation risk. By leveraging different sets of parameters, it could adapt to any specific country and specific type of epidemic. CONCLUSIONS: This framework has provided a valuable tool to parameterize the intensity of control measures, simulate both the case importation and local epidemic, and quantify the combined effects of entry restrictions and travel quarantine on managing the importation risk.


Subject(s)
COVID-19/prevention & control , Quarantine , Travel , China/epidemiology , Humans , Singapore/epidemiology
5.
Cities ; 112: 103138, 2021 May.
Article in English | MEDLINE | ID: covidwho-1074677

ABSTRACT

Large-scale and diffuse population flow amplifies the localized COVID-19 outbreak into a widespread pandemic. Network analysis provides a new methodology to uncover the topology and evolution of the population flow and understand its influence on the early dynamics of COVID-19 transmission. In this paper, we simulated 42 transmission scenarios to show the distribution of the COVID-19 outbreak across China. We predicted some original (Guangzhou, Shanghai, Shenzhen) had higher total aggregate population outflows than Wuhan, indicating larger spread scopes and faster growth rates of COVID-19 outbreak. We built an importation risk model to identify some major cities (Dongguan and Foshan) with the highest total importation risk values and the highest standard deviations, indicating the core transmission chains (Dongguan-Shenzhen, Foshan-Guangzhou). We built the population flow networks to analyze their Spatio-temporal characteristics and identify the influential sub-groups and spreaders. By removing different influential spreaders, we identified Guangzhou can most influence the network's topological characteristics, and some major cities' degree centrality was significantly decreased. Our findings quantified the effectiveness of travel restrictions on delaying the epidemic growth and limiting the spread scope of COVID-19 in China, which helped better derive the geographical COVID-19 transmission related to population flow networks' structural features.

6.
Epidemiol Infect ; 148: e298, 2020 12 09.
Article in English | MEDLINE | ID: covidwho-1009992

ABSTRACT

Using a stochastic model, we assess the risk of importation-induced local transmission chains in locations seeing few or no local transmissions and evaluate the role of quarantine in the mitigation of this risk. We find that the rate of importations plays a critical role in determining the risk that case importations lead to local transmission chains, more so than local transmission characteristics, i.e. strength of social distancing measures (NPI). The latter influences the severity of the outbreaks when they do take place. Quarantine after arrival in a location is an efficacious way to reduce the rate of importations. Locations that see no or low-level local transmission should ensure that the rate of importations remains low. A high level of compliance with post-arrival quarantine followed by testing achieves this objective with less of an impact than travel restrictions or bans.


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Quarantine , COVID-19/epidemiology , Computer Simulation , Markov Chains , Models, Biological , Physical Distancing , Poisson Distribution , Probability , Risk Factors , Stochastic Processes , Travel , Treatment Adherence and Compliance
7.
Euro Surveill ; 25(4)2020 01.
Article in English | MEDLINE | ID: covidwho-830182

ABSTRACT

As at 27 January 2020, 42 novel coronavirus (2019-nCoV) cases were confirmed outside China. We estimate the risk of case importation to Europe from affected areas in China via air travel. We consider travel restrictions in place, three reported cases in France, one in Germany. Estimated risk in Europe remains high. The United Kingdom, Germany and France are at highest risk. Importation from Beijing and Shanghai would lead to higher and widespread risk for Europe.


Subject(s)
Air Travel , Betacoronavirus , Coronavirus Infections , Pneumonia, Viral , Public Policy , Risk Assessment , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Disease Outbreaks , Europe/epidemiology , Humans , Models, Theoretical , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , SARS-CoV-2
8.
Transp Policy (Oxf) ; 96: 40-47, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-621721

ABSTRACT

On March 11, 2020, the Director-General of the World Health Organization (WHO) characterized the spread of the coronavirus disease, COVID-19, as a pandemic on the basis of "alarming levels of spread and severity, and by the alarming levels of inaction." Hence, it is urgent and imperative to evaluate the risk of COVID-19 for as many global locations as possible. This study calculates the relative risk of the importation and exportation of the COVID-19 virus. The study's most important contribution is the calculation of the overall relative risk of the importation and exportation of COVID-19 from every airport in local municipalities around the world, based on global spatial and mapping information. Three scenarios of air travel restriction are considered, and the change in the risk of importation and exportation of COVID-19 is calculated. The relative risk of importation and exportation of COVID-19 clearly shows that not only China, Europe, Middle East, and East Asia, but also the U.S., Australia, and countries in northeast Asia and Latin America are subject to risk. Further, a larger reduction in air travel through airports in a large part of the cumulative incidence area would lead to a gradual decrease in the risk flow. Importantly, the exportation risk of the disease from some airports in China, Iran, and European countries has a higher global spread than the importation risk during the pandemic stage. Therefore, every airport, or government with airports in their jurisdiction, should implement strict countermeasures. It is also indispensable for these countries to undertake countermeasures for COVID-19, such as home quarantine within each country and restricting infected or suspected individuals from flying on airplanes.

SELECTION OF CITATIONS
SEARCH DETAIL